NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SUPPORTING A TRUSTED PATH FOR THE LINUX
OPERATING SYSTEM

by
Scott A. Bartram

June 2000

Thesis Advisor: Cynthia E. Irvine
Co-Advisor: Paul C. Clark

Approved for public release; distribution is unlimited.

(B0 quazs

T 20000818 067

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
: June 2000 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Supporting A Trusted Path For The Linux Operating System

6. AUTHOR(S)
Bartram, Scott A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION REPORT
Naval Postgraduate School NUMBER
Monterey, CA 93943-5000
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The existence of Trojan horses, viruses, and other malicious software has motivated the computer security industry to invent
mechanisms that protect against malicious software. One such mechanism is called the Trusted Path. The Trusted Path provides a
way for the system to authenticate itself to the user. Once invoked, the Trusted Path provides an environment in which the user
can perform trusted operations such as login, logout, and change password.

This thesis provides a high level design for a Trusted Path and an in depth analysis of how a Trusted Path can be implemented in
the Linux operating system. Research of process family creation and keyboard handling has led to the implementation of a Secure
Attention Key that can be used to invoke a Trusted Path in Linux.

This research is meant to be used in combination with other efforts to enhance the Linux operating system as an inexpensive
platform for instruction on computer security policies.

14. SUBJECT TERMS 15. NUMBER OF
Trusted Path, Secure Attention Key, Computer Security, Linux, Policy Enhanced Linux PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF }%Issggggm CLASSIFICATIONOF | 19 SEGURITY CLASSIFI- CATION g‘:_: kg‘g’;:;‘c‘?r”
REPORT Mg OF ABSTRACT
Unclassified nclassiie Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2.69)

Prescribed by ANSI Std. 239-18

i

Approved for public release; distribution is unlimited.

SUPPORTING A TRUSTED PATH FOR THE LINUX OPERATING SYSTEM

Scott A. Bartram
Ensign, United States Navy
B.S., Oregon State University, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 2000

Author: 7& a #(/

Scott A. Bartram

Approved by: ,@% 4 cAM

a E. Irvine, Thesis Advisor

Dan Boger, Chaffm
Department of Computer Science

1l

v

ABSTRACT

The existence of Trojan horses, viruses, and other malicious software has
motivated the computer security industry to invent mechanisms that protect against
malicious software. One such mechanism is called the Trusted Path. The Trusted Path
provides a way for the system to authenticate itself to the user. Once invoked, the
Trusted Path provides an environment in which the user can perform trusted operations
such as login, logout, and change password.

This thesis provides a high level design for a Trusted Path and an in depth
analysis of how a Trusted Path can be implemented in the Linux operating system.
Research of process family creation and keyboard handling has led to the implementation
of a Secure Attention Key that can be used to invoke a Trusted Path in Linux.

This research is meant to be used in combination with other efforts to enhance the

Linux operating system as an inexpensive platform for instruction on computer security

policies.

vi

TABLE OF CONTENTS

I. INTRODUCTION.......... Cereeereneeeeeesseeesssseeseesaseeebeeitareaatareeearsteareesaaseesinteeesenneanaaann 1
A. COMPUTER SECURITYooeoeeeeeeeeeeeeeeeeeie ettt et ceeeteesaseeesaeeeseeeeranannenens 1

B. SECURE COMPUTER SYSTEM EVALUATION CRITERIA........cccoovvveeennen.. 2

C. IDENTIFICATION AND AUTHENTICATION.oooiieetieteeeeeeeeeeeeeeeeeesaaeeens 4

D. THE TRUSTED PATH ...ttt vee s e e s e esaneeeee s anenaeann 6

1. Microsoft WINAOWS NToooriiieeieciececec ettt es e sae e e e e s 7

2. TTUSEEA SOIATIS....cviicreietieteeete ettt et et teeaesse et esteesee st esseeasnsessnaansns 9

B XTS 300 ettt e e e e e e et e s e e st e et e e aeennanns 11

E. POLICY ENHANCED LINUXoootioiiitiiceeceeeetecteeeteseeeeeceeesseeeeseeessesasessnees 14
II. TRUSTED PATH HIGH LEVEL DESIGN.......couiiiiieeeeeeeeeeeereeeeeeeeeeeeeeaee e 15
A. USERINTERFACE. ...ttt eeetee e saeesaeeeeseasesssesssansnen 15

L ST ettt e s e oot s re et e et eeaeee e neananans 17

2. REAAY .ttt sae e as s 17

3. LogIn PrOMPL......coiiiiiiicieieiceeetrtete et esee et be et e seene s saeens 17

4. PassWOrd PrOmPt.......cccoveeiriecienecnieitetee ettt et er e eaene 17

5. Trusted Path MUoc.eveeeeeieeeieeeeeceee et ettt e e e e et e e e eaae s eaes 18

6. HEID ot 19

7. Session Level PIOMPL......cooviivinirieieeieeeceeeeeee ettt 19

8. Change PasswWOrdcccueeeomeenieccecieieeee ettt er e 19

9. NEW PaSSWOTAeeeieieeieeeteeeeeeeee ettt r et e e e e ea s e esee e e e nanes 20

10. Confirm and Changecocoevmiuiiiciiiiiincccetecntece et 20

L1, RUD oottt et et e e e e e e e e s eeee s ene e e e sesanaesesemnneen 20

12, LISE SESSIONS ...eveeveviveereneeeeaeeeesieseeesresesteseeeeseestesesessessssssesasssessssesessssssessessenens 20

13, Kill SESSION MEMUooeeriiceeieeeeecceeeeee ettt e et e e ere et et eeeaeesseseenaesaeeessenean 21

II. TRUSTED PATH HIGH LEVEL DESIGN FOR LINUX......ooeoieieeteeeeeeeeeeeeeeeennn 23
A. USERINTERFACE....... ettt eee et st eaa e e e ae e aeeseaeenesanean 23

1. Red Hat Linux 6.0 Getty/LOginc.ccccerteeeriereeerenreeeeeieieseeeeveceeeeseeteere e esaens 23

2. Modifications NEEAEAccouieeeeeieieeiieceeeieeeeeeeeee e eeees e eeseesesessseesnessaneans 28

B. SECURE ATTENTION KEY (SAK) ...ueeieiieeeeeeeeeeeee ettt e e e e e eeseaeseanas 34

1. RedHat LinuX 6.0 SAK ...ttt e eee s eeassasesesnaesesnnean 34

2. Modifications NE€dedccueeevieeeeeieeeiiceeeeeeeeeee et eee e e eeae e e eeeee e e ae s 41

IV. IMPLEMENTATION STATUS AND FUTURE WORKocoeoteeeeeeeeeeeeeeeeenennn 43
A. IMPLEMENTATION CONSIDERATIONSo oo oeeeeeteeeeeeeeeeeeeeeeeeeeseee e 43
B. PROBLEMS ENCOUNTEREDocooiiitiiieeeeeeteeeeeeee e ete e veesaa e eesaeenns 45
C. FUTURE RESEARCHootioeeee et e e ee e e ns 45

L. LOGIN_DIIVET ..ottt ettt 45

2. SESSION_DIIVET ...ttt ettt e et e s e e ee e e e s e saseseesesaeesaneassessereeeennns 46

vil

3. Trusted_Path. MenU_DIIVET ...oooeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeese e sesesesesesns 46

4. INIEEAD ...ttt ettt sttt nea 46

5. Administrative ROIEc.ccooiiiiiiiicecceee et 46
APPENDIX A. MODULE DESIGN......ccocceoiiiiieareteeeieeee e ee st ss e e eseaeas 49
A, STATE_MODULEcooiiitrtiiseeeetes ettt e sttt sas s e b snanes 49

Lo SETPSLALE ...ttt ettt neane 50

2. GEITPSIALE ..ottt e re e s ettt b s ereeneaeeren 51
APPENDIX B. SOURCE CODE.......cccooiiiiiiieteteeeiete ettt sre st see e sesenens 53
A, SAK _DRIVER ...ttt sttt ass bt enens 53

Lo Sk Dttt bt 53

2t SBKLC et sttt a ettt e et neane 53

B. MODIFIED KEYBOARD DRIVER FILESccceoeiteieieeeeeeeeeeevevevnnnes 55

L. KeYDOAId.Cu.uecneiniiieiccee ettt ettt 55

2. PC_KEYD.Cunie ettt ens 56

C. MODIFIED CONFIGURATION SCRIPTcccceeeieieiimiieieeeeeeeeeeeve et 56

Lo KCONFIZAK oottt et 56

D. DUMBGETTY ..ottt ettt ettt as e 57

Lo DUMDGEY.Cooeeriiie ettt 57

E. MODIFIED INITTAB ...ttt ettt ettt saeae s enes 59

Lo INIEEAD. oottt et ne s 59
LIST OF REFERENCESoooiiiiictee ettt ettt st st s s s s 61
INITIAL DISTRIBUTION LIST......oooooroeeeeeeeereeseseeeeeeseseeesseeeseseessemmsesssessseseseseeeseee oo 65

viii

I INTRODUCTION

A. COMPUTER SECURITY

The need for computer security is growing at an astounding rate, parallel with the
Internet. The speed and ease of transferring data from one site to another is increasing,
yet Internet users are realizing that the World Wide Web was not designed to protect data
being transferred across the network. Electrical engineers are designing new
communication media with high bandwidth, low noise, and low attenuation (e.g., fiber
optics). Network engineers are designing better methods of relaying data between
network hubs, bridges, and routers. Software engineers are designing better network and
application protocols for using the data. Consequently, massive amounts of data are
being transferred with virtually no protection. It is easy to transfer program files from a
random Internet site and run them on a local computer. There are some web pages that
automatically transfer and execute files on an accessing computer without the user’s
knowledge. Even with an up to date virus checker, a user cannot be confident that there
is not a virus or a Trojan horse in a recently downloaded file. The existence of viruses,
Trojan horses, and other types of malicious software is the motivation for this thesis.
Computer security is very important to the future of computing, and standards have been
set to ensure the survival of computer security in the new millennium.

A computer with an operating system that enforces a security policy must be
designed using the standards described in the government evaluation criteria described in

the following section. This thesis discusses some of the essential mechanisms that are

needed in the design of the operating system for a secure computer. Particular emphasis
is placed on accountability mechanisms such as Identification and Authentication and

Trusted Path.

B. SECURE COMPUTER SYSTEM EVALUATION CRITERIA

An early notable effort in computer security standards came in 1983 with the
release of the Department of Defense Trusted Computer System Evaluation Criteria
(TCSEC), commonly referred to as the “Orange Book” [Ref.1]. The most recent version

of the Orange Book was released in 1985 and it lists the following purpose:

...* To provide a standard to manufacturers as to what security features to

build into their new and planned, commercial products in order to provide

widely available systems that satisfy trust requirements (with particular

emphasis on preventing the disclosure of data) for sensitive applications.

* To provide DoD Components with a metric with which to evaluate the

degree of trust that can be placed in computer systems for the secure

processing of classified and other sensitive information. * To provide a

basis for specifying security requirements in acquisition specifications.

[Ref.1, p.2]

The method used for evaluating a computer system against TCSEC was, and for
some ongoing evaluations still is, the Trusted Product Evaluation Program (TPEP)
[Ref.2]. TPEP evaluates systems and then rates them with one of seven TCSEC
evaluation classes. The TCSEC classes are labeled from D1 to Al, with D1 being the
lowest (least secure) class. Each TCSEC class contains specific requirements for security

policy, accountability, assurance, and documentation [Ref.1, p.5]. TPEP was sponsored

by the National Computer Security Center (NCSC) but is now being replaced with the

Trust Technology Assessment Program (TTAP) [Ref.3]. TTAP is a program sponsored
by the National Security Agency (NSA) that provides a means for commercial-off-the-
shelf k(COTS) products to be evaluated. TTAP oversees the establishment and regulation
of TTAP Evaluation Facilities (TEF) [Ref.4]. Laboratories that want to become TEFs go
through an application and evaluation process in order to be certified by the TTAP
[Ref.3]. In addition to being a new program, TTAP also uses new evaluation criteria
called the Common Criteria for Information Technology Security Evaluation (CCITSE or
CC) [Ref.5].

The CC differs from TCSEC in that it does not group all of the security
requirements (policy, accountability, and assurance) into one class. The CC permits
separate evaluation of Protection Profiles (PP) [Ref.6] (a conceptual design including
policy and accountability) or Security Targets (ST) [Ref.7] (an implemented system
design including policy and accountability). After the evaluation, the PP or ST is
assigned an Evaluation Assurance Level (EAL) [Ref.8] that is used as a marker for the
level of assurance that should be placed in the PP or ST. It is easy to be misled and
compare EALs (assurance only) directly to TCSEC classes that contain policy,
accountability, and assurance. It is the PP or ST that contains the security policy and
accountability requirements previously included in the TCSEC classes. Therefore, even
though a PP may have a high EAL, it may compare to class D1 in TCSEC. It is important
to be sure the PP fits the security policy that is needed by the system. One of the current
efforts of the TTAP is the evaluation of PPs that contain the requirements from popular

TCSEC classes. The difficulty when making these new PPs is that the CC contains a lot

more detail in its evaluation criteria and some of the TCSEC requirements are somewhat

vague in comparison.

C. IDENTIFICATION AND AUTHENTICATION

Computers that provide access to users commonly have a mechanism that
provides assurance to the system that the user is not an impostor (i.e., username and
password entry). This mechanism is called “Identification and Authentication”. The

TCSEC section on Identification and Authentication states:

The TCB [Trusted Computing Base] shall require users to identify
themselves to it before beginning to perform any other actions that the
TCB is expected to mediate. Furthermore, the TCB shall use a protected
mechanism (e.g., passwords) to authenticate the user’s identity. The TCB
shall protect authentication data so that it cannot be accessed by any
unauthorized user. [Ref.1, p.12] '

Computer systems to be evaluated by the TCSEC are required to provide Identification
and Authentication at classes of C1 and higher. Class C1 is defined as providing low
protection discretionary access control. The CC section on Identification and

Authentication states:

Families in this class [Class FIA: Identification and Authentication]
address the requirements for functions to establish and verify a claimed
user identity. Identification and Authentication is required to ensure that
users are associated with the proper security attributes (e.g. identity,
groups, roles, security or integrity levels). The unambiguous identification
of authorized users and the correct association of security attributes with
users and subjects is critical to the enforcement of the intended security
policies. [Ref.5, Part 2, p.79]

The entry of a username and password to gain access to a computer is a familiar
form of Identification and Authentication. The problem with many Identification and
Authentication implementations is that they do not provide a mechanism for the system to
authenticate itself to the user. It is very easy for an attacker to write a program that can
look and feel exactly like the login process for a given computer. If it is easy to look and
feel like a login program, then it is just as easy to steal a password, store it somewhere for
later retrieval, print an error message to the console, and then start the “real” login
program. The user would think the error message was caused by a typo and never suspect
that the password was stolen. Figure 1 is an example of a login terminal for the Linux

operating system.

Red Hat Linux release 6.8 (Hedwig)
Kernel 2.2.5-15 on an i686

[bartram@rudi bartram]$

Figure 1. Example Login Terminal

The scenario described above is called “login spoofing” which is accomplished
using “masquerading software”. Masquerading software can be used when an attacker
wants to obtain information by posing as a familiar process. The existence of

masquerading software is one of the motivations for the design of the Trusted Path.

D. THE TRUSTED PATH

So that the user has a high level of assurance that the system being accessed is the
“real” system rather than masquerading software, the system must have a Trusted Path.
The Trusted Path is a mechanism that provides a way for the system to authenticate itself
to the user. The TCSEC requires the Trusted Path at Class B2 and higher [Ref.1, p.29].
The TCSEC definition of the Trusted Path is, “A mechanism by which a person at a
terminal can communicate directly with the Trusted Computing Base. This mechanism
can only be activated by the person or the Trusted Computing Base and cannot be
imitated by untrusted software” [Ref.1, p.117]. The CC section on the Trusted Path

states:

A trusted path provides a means for users to perform functions through an
assured direct interaction with the TSF [Target of Evaluation Security
Functions]. Trusted path is usually desired for user actions such as initial
identification and/or authentication, but may also be desired at other times
during a user’s session. Trusted path exchanges may be initiated by a user
or the TSF. User responses via the trusted path are guaranteed to be
protected from modification by or disclosure to untrusted applications.
[Ref.5, Part2, p.167]. '

The mechanism that is normally used to invoke a Trusted Path is called the Secure
Attention Key (SAK) [Ref.9, p.67]. Traditionally, the Secure Attention Key has been
implemented using a sequence of keystrokes from a keyboard connected to a system
terminal. The TCSEC and CC do not reference the term “Secure Attention Key”; they
only suggest that there must be a way for the user to initiate a Trusted Path. Tuming the

computer OFF and then ON again could be considered crude form of SAK. When the

Trusted Path is invoked (i.e., using the SAK), all other user processes using the terminal
are suspended or killed (depending on the implementation or state of the system) while
the Trusted Path remains active. Some Trusted Paths give the user options such as
logout, shutdown, restart, and end task (kill process). The options that are provided to the
user may support some other reasons for having a Trusted Path such as the ability to
escape from an unwanted state (i.e., endless loop, deadlock), change a password, change
session level, and modify access privileges. The following sections describe a few
evaluated systems that have implemented a Trusted Path.

1. Microsoft Windows NT

Microsoft Windows NT Workstation and Windows NT Server Version 4.0 with
Service Pack 6a and C2 Update has been rated Class C2 by the National Security Agency
(NSA) in accordance with the TCSEC [Ref.10]. Thé rating was announced in November
1999 and was conducted by the Science Applications International Corporation (SAIC),
Center for Information Security Technology, Evaluation Laboratory. The version of
Wiﬁdows NT mentioned above is the most recently evaluated version and has evolved
from the previous version 3.5 that was rated Class C2 with Service Pack 3 [Ref.11]. The

evaluation summary for version 3.5 included the following remarks regarding Trusted

Path:

... the Windows NT platform was examined against the B2 Trusted Path
and B2 Trusted Facility Management functional requirements of the
TCSEC. A system that satisfies the B2 Trusted Path functional
requirement supports a trusted communication path between itself and the
user for identification and authentication. A system that satisfies the B2
Trusted Facility Management functional requirements supports the ability
to separate operator and administrator functions. Although the Windows
NT platform satisfies these functional requirements at the B2 level, it was
not evaluated against any assurance requirements above its rated C2 level.
[Ref.11]

Windows NT uses a window to notify the user that the SAK must be pressed in order to
start a user session. The window displays: “Press Ctrl+Alt+Delete to log on”. The SAK
for Windows NT is the simultaneous key sequence “Control”, “Alt”, and “Delete”. When
the SAK is pressed the user is presented a Logon Information (Trusted Path) window that

prompts for a username and password. The Logon Information window has the following:

options:
e OK
e Cancel
e Help

e Shut Down
After the user has successfully logged onto the system, the Trusted Path offers different
options to the user. When the SAK is pressed, the Windows NT Security (Trusted Path)
window is presented with current logon information and the following options:

e Lock Workstation

e Logoff

e Shut Down

e Change Password

e Task Manager

e Cancel
By pressing the SAK, the user is given assurance that they are actually communicating
with the system and not to masquerading software. Important tasks such as password
entry and password changing are only available to regular users after invoking the Trusted
Path.

2. Trusted Solaris

Trusted Solaris 7 is the most recent version of the system offered by Sun
Microsystems, Inc. and is entering into evaluation under the Common Criteria with the
goal of receiving an EAL4 evaluation class for Trusted Solaris 8 shortly after the product
is released. Trusted Solaris 7 will not receive an evaluation class [Ref.12]. The Trusted
Solaris 7 is derived from previous versions of Trusted Solaris that have been evaluated by
the National Computer Security Center (NCSC), the Defense Intelligence Agency (DIA),
and the United Kingdom Information Technology Security (UK ITSEC) scheme. The
Trusted Solaris system was originally designed to be evaluated as a compartmented mode
workstation (CMW) system. A system evaluated as meeting DIA criteria for a CMW
system also has a Class B1 rating according to the NCSC criteria (TCSEC) [Ref.13, p.4].

As is with Windows NT, even though Trusted Solaris has not been evaluated as a Class

B2 system, it has implemented a Trusted Path.

The Trusted Solaris Trusted Path is different in that it does not use the keyboard
for its SAK. All of the Trusted Path options are accessed via a windows-based Graphical
User Interface (GUI) and a mouse (the mouse is used as the SAK). The Trusted Path is
activated in one of two ways: from the label stripe of a window or from the screenstripe
[Ref.14, p.10]. The screenstripe (always visible) is located at the bottom of the screen
and displays information based on what is happening with the mouse pointer, the
keyboard, and the windows on the screen. This section focuses only on the Trusted Path
for the Trusted Solaris. The “Security Features User’s Guide to Trusted Solaris” provides
complete explanations of security features available via the Trusted Path [Ref.13]. When
the MENU button on the mouse is pressed while hovering over the label stripe of a
window, the following Trusted Path options are presented:

e Show Full Window Label — shows the information and sensitivity labels of the

window [Ref.14, p.60].
¢ Set Input Information Label — used to set the input information label from the
keyboard [Ref.14, p.61].
When the MENU button on the mouse is pressed while hovering over the screenstripe,
the Trusted Path Menu appears.

The Trusted Path Menu is divided into two main sections: Utilities and Set
Labels. The initial Trusted Path Menu window that is displayed contains the Utilities and
Set Labels directories along with options for Change Password and Set Screen Access.
Table 1 lists and describes the Trusted Path Menu options for the Utilities and Set Labels

directories [Ref.14, p.62-68].

10

Utilities Description

Refresh Screen Redraw the screen

Windows Controls Open/close, full/restore size, quit
Save Workspace Save current window configuration
Lock Screen Password protect workspace

Log Out Terminate session

Set Labels Description

File and Directories Set file labels

Workspace Menu SL | Set workspace menu label

Cut and Paste Defaults | Display selection labeler

Table 1. Trusted Solaris Trusted Path Menu Options

A major difference between the Trusted Solaris and the other two systems
described in this chapter is the login process. The user is not given an option to enter the
Trusted Path before entering login information. The Trusted Solaris Security Features

User’s Guide states:

When the login téol or lockscreen application is running, the screenstripe

is not visible; instead, the entire background, including the area of the

screenstripe, displays a trusted pattern. [Ref.14, p.10]
The guide does not describe what the trusted pattern is supposed to look like. However,
since only the Trusted part of the system has the authority to cover up the screenstripe
(which the login tool does), the user can feel confident that the system is in a Trusted
state.

3. XTS-300

The XTS-300 is a combination of STOP, a multilevel secure operating system,

and an Intel x86 hardware base (supplied by Wang Government Services, Inc.). XTS-300

STOP 4.4.2 has been rated Class B3 by the NSA in accordance with the TCSEC [Ref.15].

11

The XTS-300 STOP 4.4.2 is the most recently evaluated version of the product (March
1998) and has evolved from the XTS-200 STOP 3.1.E that was rated Class B3 in May
1992 [Ref.16]. The XTS-200 evolved from the SCOMP Version STOP 2.1 that was
rated Class Al in December 1984 [Ref.16]. Since the XTS-300 has been evaluated at
Class B3 and the Trusted Path is required at Classes greater than or equal to B2, it follows
that there is a Trusted Path on the XTS-300.

Unlike Windows NT, the XTS-300 does not provide notification to the user that
the SAK must be pressed in order to start a session. After the system is booted, there is
no way for the user to communicate with the system until the SAK has been pressed. The
SAK for the XTS-300 console is the simultaneous key sequence “Alt” and “SysRq”
[Ref.17, p.9]). When the SAK is pressed, the user is connected with the Secure Server.
The Secure Server is that portion of Trusted Software that processes terminal commands
[Ref.17, p.9]. When first logging inio the system, the Secure Sever prompts the user to
enter a username and password [Ref.17, p.11]. After the user has successfully logged
onto the system, the Secure Server (Trusted Path) offers different options to the user.
When the SAK is pressed, the user is connected with the Secure Server in the trusted
environment and prompted to enter a command [Ref.17, p.14]. The commands available
to the user are called TCB (Trusted Computing Base) User Commands and they are split
into 4 categories: Process Management, Session Management, File Management, and
System Status. Table 2 lists and describes the TCB User Commands for each category

[Ref.17, p.15-38].

12

Process Management

Description

Disconnect

Disassociate a process family from a user sesion
(active processes will continue to run after logout)

Ikill Immediately kill all processes in specified family
_ (guarantees termination of the process family)

Kill Kill all processes in specified family (does not
guarantee termination of the process family)

Logout Log off system

Reattach Reconnect to a process family (return to an existing
UNIX session)

Run Begin execution of a process family (leave trusted

environment and start a UNIX shell)

Session Management

Description (used for setting up UNIX shell)

Cep Change command processor pathname

Cdl Change default level

Chd Change home directory pathname

Cup Change user password

Sg Set group identifier for the current session

S1 Set access level for the currenet session

File Management Description |
Fsm Provides various functions for displaying,

modifying, or deleting file system objects

System Status Description
Session Display information about the current session
System Display system status information

Table 2. XTS-300 TCB User Commands Available Through The Trusted Path

Table 2 reflects only the commands available to the user. There are 3 distinct

roles in the XTS-300 environment:

e System administrator

e Operator

o User

It is important to note that there are several other TCB commands that are available to
people with higher privelege levels (system administrators and operators). Trusted
activities such as configuring, bypassing, activating, or deactivating security features are
available to administrators and operators only[Ref.18, p.1].

The XTS-300 supports an X-Windows (GUI) environment for use outside of the
TCB. When the SAK is pressed during an X-Windows session, the X-Windows process
family is detached and the Secure Server prompt appears. The Trusted Environment for
the XTS-300, though not as GUI oriented as Windows NT, provides a much larger
variety of options to the user.

Also, the XTS-300 contains functionality similar to the Linux operating system
(command shell support, X-windows, and a UNIX compatible non-trusted environment)

which makes it a good reference for the design of a Trusted Path for Linux.

E. POLICY ENHANCED LINUX

Clark describes a low cost approach to implementing a Mandatory Access Control
(MAC) security policy using the Linux operating system [Ref.19]. In his conclusions,
Clark suggests the implementation of a Trusted Path for use with the version of Policy
Enhanced Linux resulting from his work. The remainder of this thesis is dedicated to
providing the design and implementation of a Trusted Path for Policy Enhanced Linux

[Ref.19]

14

IL. TRUSTED PATH HIGH LEVEL DESIGN

This chapter provides a high level description of the trusted path user interface.

Chapter III describes lower level Linux modifications to implement the design.

A. USER INTERFACE

There are a number of different states from which the user can apply the Secure
Attention Key to invoke the Trusted Path. Consequently, invocation of the Trusted Path
can lead to more than one state within the Trusted Path itself. More specifically, the SAK
does not always bring the user to the same interface, rather it is dependent upon the state
the system is in at the time the SAK is pressed. It is important to account for each
possible system state and then which interface should be used. Figure 2 displays the

Finite State Machine for the User Interface.

15

Ghotion 0

irevalid session lzvel’
" SESSION

option 2

Figure 2. User Interface Finite State Machine

16

1. Start

This state covers the entire boot and initialization process of the system. If the
SAK is pressed while the system is in the Start state, nothing will happen and the system
will continue initializing.

2. Ready

Once the operating system finishes its initialization and all of the appropriate
processes are running, the system enters the Ready state in which the user is given a
prompt. At this point the user must use the Trusted Path in order to gain access to the
system. This state will display a message to the user that asks for the SAK to be pressed
in order to start. Only the SAK will allow the system to start the Trusted Path and start
the login process.

3. Login Prompt

This state is reached from the Ready state or from the Password Prompt state after
the SAK has been pressed. There will be a display to the user that shows the trusted path
is active. Also, the login prompt will be displayed requesting a username. At this point if
the SAK is pressed, the Trusted Path will restart and the previously mentioned displays
will be redisplayed. When a username (valid or invalid) is entered, the Trusted Path
moves to the Password Prompt state.

4. Password Prompt

This state is reached from the Login Prompt after a username has been entered.
There will be a display to the user that shows the trusted path is active. Also, the

password prompt will be displayed requesting a password. At this point if the SAK is

17

pressed, the Trusted Path will move to the Login Prompt state. If a valid password is
entered, the Trusted Path will move to the Trusted Path Menu. If a password has not
been entered in a reasonable amount of time (the timeout interval), the user is returned to
the Login Prompt. If an invalid password is entered, the user is returned to the Ready
state and is prompted to press the SAK again.

5. Trusted Path Menu

This state is reached from many states and is the workhorse of the Trusted Path.
There will be a display to the user that shows the trusted path is active and the current
session level being used. Also, there will be a prompt for the user to select from the
following menu options:

0 - Help

1 ~ Logout

2 — Session Level

3 — Change Password

4 — Run

5 —~ List Sessions

6 — Kill Session

Other options such as reboot and halt could be added as administrator option
functions presented to those who are configured as administrators. At this point if the
SAK is pressed, the Trusted Path Menu will be redisplayed. Selection of a particular

option will move the Trusted Path to the associated state.

18

6. Help

This state is reached from the Trusted Path Menu (Option 0). There will be a
display to the user that shows the trusted path is active. The user will be provided with
text explaining how the Trusted Path Menu should be used. At this point if the SAK or
any other key is pressed, the user is returned to the Trusted Path Menu.

7. Session Level Prompt

This state is reached from the Trusted Path Menu (Option 2). There will be a
display to the user that shows the trusted path is active. There will be a user prompt and
an example of how to specify a session level (i.e., how to type in the level and any
categories). At this point if the SAK is pressed, the user is returned to the Trusted Path
Menu without changing the session level. When an invalid session level is entered or the
level is outside the user’s clearance, the current session level is not changed, a message is
displayed telling the user what was done incorrectly, and the user is returned to the
Session Level Menu. When a valid session level is entered, the current session level is
set to the entered session level and the user is returned to the Trusted Path Menu.

8. Change Password

This state is reached from the Trusted Path Menu (Option 3). There will be a
display to the user that shows the trusted path is active. The user will be prompted to
enter the old password. At this point if the SAK is pressed or an invalid password is
entered, the user is returned to the Trusted Path Menu without changing the password.

After the old password is entered and verified to be true, the Trusted Path moves to the

New Password state.

9. New Password

This state is reached by typing a valid password at the Change Password state.
There will be a display to the user that shows the trusted path is active. The user will be
prompted to enter a new password. At this point if the SAK is pressed, the user is
returned to the Trusted Path Menu without changing the password. After the new
password is entered, the Trusted Path moves to the Confirm and Change state.

10. Confirm and Change

This state is reached by typing a new password at the New Password state. There
will be a display to the user that shows the trusted path is active. The user will be
prompted to re-enter tﬁe new password. At this point if the SAK is pressed, the user is
returned to the Trusted Path Menu without changing the password. If the password
entered is valid, the password is changed and the user is returned to the Trusted Path
Menu. If the password entered is invalid, the user is returned to the New Password State.

11. Run

This state is reached from the Trusted Path Menu (Option 4). A user shell will be
created at the current session level and the user will no longer be informed that the trusted
path is active. The SAK is the only way to get back to the Trusted Path Menu from this
State.

12. List Sessions

This state is reached from the Trusted Path Menu (Option 5). There will be a
display to the user that shows the trusted path is active. The user will be provided with a

list of sessions that are currently available. The list of sessions will display the name of

20

the sessions and the associated levels. At this point if the SAK or any other key is
pressed, the user will be returned to the Trusted Path Menu.

13. Kill Session Menu

This state is reached from the Trusted Path Menu (Option 6). There will be a
display to the user that shows the trusted path is active. There will be a prompt for the
user to select from the following menu options:

0 - go back

1 — kill session level 1

2 —kill session level 2

... and so on depending on the number of open session levels
At this point if the SAK is pressed, the user will be taken back to the Trusted Path Menu

and no sessions will be killed. Selection of a particular option will kill the associated

session.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

III. TRUSTED PATH HIGH LEVEL DESIGN FOR LINUX
This chapter describes the current design (login, SAK, process management) used
by Red Hat Linux 6.0 and the modifications needed to implement the high level design

from the previous chapter.

A. USER INTERFACE
1. Red Hat Linux 6.0 Getty/Login

Linux currently uses the user applications ‘mingetty’ and ‘login’ to start a
command shell. The ‘mingetty’ application is spawned by the first process in the Linux
Process Table, called ‘init’ [Ref.20, p.389]. The ‘init’ process is assigned process
identiﬁcation number (PID) 1. All processes that are created and placed on the Linux
Process Table are children of ‘init’. The ‘mingetty’ application is started after ‘init’ starts
several other processes that are required for the operating system to function properly.
This section only discusses the processes necessary for a user to login to the system.

‘Init” and other (parent) processes are able to create new (child) processes by
using the ‘fork’ system call [Ref.20, p.306]. The ‘fork’ system call generates a child
process as a copy of the parent process. When the copy is made, a new PID is assigned to
the child process and only the page tables and process structure are duplicated. Once a
child process has been created, the ‘execve’ system call can be used to execute a new
program using the task structure of the child [Ref.20, p.345]. More specifically, ‘execve’
overlays the calling (child) process by overwriting the calling processf code segment with

the loaded program. The program inherits the PID of the calling process and any pending

23

signals are deleted. Basically, the calling process is replaced by the loaded program to

create a new process that recycles the PID and task structure of the calling process. The

system calls ‘fork’ and ‘execve’ are used to add to the Linux Process Table and as such

are instrumental in the following description of the user login process. Figure 3 displays

the User Login Finite State Machine and the associated Process Flow Diagram. The

dotted lines represent the areas where the Process Flow Diagram and User Login FSM are

directly related (correlation).

User Login FSM

comvelabion

Process Flow Diagram

/n;t- (com fork \

\D 435 PID,,/

gexecve

@ (rh fork
KD 466

lnvm‘\ exit
PID 43i/——->

bash
PID 466

execve

¢ exit

Figure 3. User Login Finite State Machine For Standard Linux

The ‘init’ process forks and adds the ‘mingetty’ application to the process table. The

‘mingetty’ application displays a login prompt to the user and waits for a username to be

entered.

24

It is important to note that most Linux releases are defaulted to initialize more
than one user terminal (tty) after startup. The ‘init’ process looks at a file called ‘inittab’
(normally located in the ‘/etc’ directory) for a list of programs to run at startup [Ref.21].
Essentially, the ‘inittab’ file is the map that ‘init” uses to set up the system and start at a
specified run level. The ‘inittab’ file for Red Hat Linux 6.0 is configured to initialize 6
ttys. Each tty is set up by using the ‘mingetty” application. The following example is for
a system that is using only one tty. Figure 4 displays three important views to aid
understanding how the user login process is started. First, an example of the process
table is provided (the actual process table is much larger and includes all of the processes
created by ‘init’ at startup, including the other 5 ttys). Second, an example of the tty
display shows what the user can see at the terminal. Third, a snapshot of the finite state

machine shows the location of the process execution flow at this point.

Process Table After System Startup/Boot: TTY Display:

UID PID PPID CMD Red Hat Linux release 6.0 (Hedwig)
root 1 0 init Kemel 2.2.5-15 on a 1386
root 435 1 {sbin/mingetty Login:

Snapshot From Figure 3:

User Login FSM Process Flow Diagram

Figure 4. Process Table After System Startup/Boot

After a usémame is entered at the login prompt, ‘mingetty’ executes the ‘login’
application. The ‘login’ application displays a password prompt to the user and waits for
a password to be entered. Figure 5 shows the process table, tty display, and process
execution flow for this state. Note the PID is the same as it was for ‘mingetty’. The
‘login’ application is not assigned a néw PID because ‘mingetty’ used the ‘execve’
(“/bin/login”) system call which allows another executable (‘login’) to take over the

current position in the process table.

26

Process Table: TTY Display:

UiD PID PPID CMD Red Hat Linuxz release 6.0 (Hedwig)
root 1 0 init Kemel 2.2.5-15 on 2 1386
root 435 1 fbinflogin - Login: root

Password:

Snapshot From Figure 3:

”I‘..ogin
Prompt

usermam 2NeCVE

invalid entered

usemme}f P e pererearaeeras, TR AN s ar e e any ;

passwdy” Password login (copy)“\’ fork /7 login i exit

4——_ Prompt PID 466 PID 435 &
.......................... \\—___r \\— -//

Figure 5. Process Table After Username Is Entered

If an invalid username/password pair is received, then ‘login’ exits and ‘mingetty’
is respawned by ‘init’. When the ‘login’ application receives a valid username/password
pair, then the shell application (‘bash’) is started as a separate process. Once the shell is
started, then the user is considered logged into the system and is able to type commands
at the terminal. Figure 6 shows the process table, tty display, and process execution flow

for this state. Note that ‘login’ uses the ‘fork’ system call and creates a new PID before

starting ‘bash’ with the ‘execve’ system call.

Process Table:

TTY Display:

UID PID PPID CMD

root 1 0 nit
root 433 1 login —root
root 466 435 -bash

Snapshot From Figure 3:

Red Hat Linux release 6.0 (Hedwig)
Kemel 2.2.5-15 on 2 1386

Login: root

Password:

[root]$

o

\. login (co‘a\ fork /

N\TID e /€A ID 45

login exit

Ll

{_ PID 466

execve

Figure 6. Process Table After Password Entered

The previous description of the Linux login process is a precursor to the next section that

suggests modifications needed to implement a Trusted Path in Linux.

2. Modifications Needed

This section describes the modifications and additions required to implement the

Trusted Path design from Chapter II. Figure 7 shows the process flow diagram for the

Trusted Path.

28

Children of

Dumbgetty ‘bash’ for Active Session
Active Session
Application Layer \
Kemel Layer

State Database
Driver

Trusted Path
Menu Driver

Session
Handler

Figure 7. Trusted Path Process Flow Diagram

a. Dumb Mingetty Process (dumbgetty)

The dumb ‘mingetty’ or ‘dumbgetty’ process is a replacement for the
current ‘mingetty’ process. The original ‘mingetty’ is being replaced because it is a user
application and the Trusted Path must reside in the kernel. Therefore, ‘mingetty’ is no
longer needed for login but something is needed to provide information to the user at
system start up. The ‘dumbgetty’ program will provide a display that asks the user to

press the SAK in order to invoke the Trusted Path User Interface. The login prompt can

be spoofed, so it is important to train users to always use the SAK to start a session. The
‘dumbgetty’ program will also serve (indirectly) as a parent process to newly created
sessions. A parent process is required for all newly created processes. When a new
session process family is created, the Session_Driver (described later) will use the PID for

‘dumbgetty’ in order to masquerade as the parent process and create new children.

b. Login_Driver

The source code for the Login_Driver will be called ‘login.c’ and will
reside in the ‘/linux/drivers/char/’ directory. The code will be a combination of the
original ‘mingetty’ and ‘login’ applications. The login module will represent and contain
all of the functionality of the Login Prompt and Password Prompt states described in
Chapter II. The original user applications such as ‘mingetty’ and ‘login’ can be easily
modified and recompiled by a user, thus violating what little security is offered by Linux.
In order to prevent a login spoof attack, this driver and the following suggested modules

and drivers must reside in the kernel.

c. State_Module

The source code for the State_Module will be called ‘state.c’ and will
reside in the ‘/linux/drivers/char/’ directory. The code will contain the memory-resident
variable that maintains the current state of the Trusted Path. All changes in state will be
caused by one of the Trusted Path modules (Login or Trusted Path Menu). Therefore, it
is necessary to implement the State_Module in the kemnel because it must be accessible to

all of the Trusted Path modules.

30

To perform the correct action, the SAK_Driver must know the state of the
Trusted Path. The memory-resident variable contained in the State_Module will be called
‘TPState’. TPState will hold a number value based on the following possible states
(described in detail in Chapter IT):

I - Start

2 - Ready

3 - Login Prompt

4 - Password Prompt

5 - Trusted Path Menu

6 - Help

7 - Session Level Prompt

8 - Change Password

9 - New f’assword

10 - Confirm and Change

11 - Run

12 - List Sessions

13 - Kill Session Menu

TPState will be referenced by the SAK_Driver in order to learn the current Trusted Path

state and move to the next correct state. The TPState variable will be updated after every

state change.

31

d. Session_Database

A database containing the active sessions and associated PIDs is necessary
for keeping track of session information. The database will be used by the
Session_Driver (described later) to perform various session operations such as kill
session, set session, and update current session. The database is a list of memory-resident
structures containing session information for all of the available sessions. The structure is
called “TPSession” and contains the following elements:

e active: is true when session is the active/current session

e PID: holds the PID of the first process in the session family

e label: holds the session level information, needed by Policy Enhanced

Linux [Ref.19] .

The Session_Database will be encapsulated by the Session_Driver described next.

e. Session_Driver

The source code for the Session_Driver will be called ‘session.c’ and will
reside in the ‘/linux/drivers/char/’ directory. The Session_Driver is an interface resident
in the kernel to handle the creation, reactivation, suspension, and termination of user
sessions.

The Session_Driver encapsulates and manages the Session_Database and
is the only interface that will reference the Session_Database. The declaration for the

“TPSession’ structures (Session_Database) is located in the Session_Driver.

32

(1) Creation. The Session_Driver looks in the
Session_Database to see if there is a session listed that matches the currentSession
variable provided by the Trusted_Path_Menu_Driver. If there is a matching session, then
it must be reactivated (see next section on ‘Reactivation’). If there is not a matching
session, then a new session must be created. The new session is created based on the
value of the currentSession variable. The Session_Driver creates a new session by
masquerading as ‘dumbgetty’, calling ‘fork’, and within the cloned child process calling
‘execve’ to start ‘bash’ for the requested session level. After the session is created a new
TPSession structure is added to the Session_Database and the ‘active’ flag is set. Also, if
the ‘active’ flag was set for any other session, it is toggled to false. There can be only one

active session.

(2) Reactivation. If the currentSession variable
matches a session listed in the Session_Database, then it must be reactivated. The
Session_Driver must alter some portion of the session process family structure to allow
scheduling to resume. After the session is reactivated, the ‘active’ flag is set for the
session in the Session_Database. Also, if the ‘active’ flag was set for any other session, it

1s toggled to false at this time.

(3) Suspension. When the SAK is pressed and the
previous state listed in the State_Module is equal to Run (TPState = 10), then the

Session_Driver must suspend the active session process family from being scheduled.

4) Termination. When the Kill Session Menu is used
to kill a session, control is passed from the Trusted_Path_Menu_Driver to the

Session_Driver and the process family for the selected session is deleted from the process

table and the Session_Database.

f Trusted Path_Menu_Driver

The source code for the Trusted_Path_Menu_Driver will be called
‘trustedmenu.é’ and will reside in the ‘/linux/drivers/char/’ directory. The code will
represent and contain all of the functionality of the Trusted Path Menu and associated
states (Help, Session Level Prompt, Change Password, List Sessions, Kill Session Menu)
described in Chapter II. In addition, the Trusted_Path_Menu_Driver will have 2 memory-

resident variable called ‘currentSession’ that keeps track of the current ‘active’ session.

g SAK Driver

The SAK driver is described in the next section which provides a detailed

description of how and where it be implemented.

B. SECURE ATTENTION KEY (SAK)
1. Red Hat Linux 6.0 SAK

There exists a function called ‘do_SAK’ in the tty driver that, when called,
abruptly kills all the tasks asssociated with the tty and forces mingetty to be respawned.
The ‘do_SAK’ function is found in the ‘linux/drivers/char/tty_io.c’ source file [Ref.22].

The code comments listed prior to the ‘do_SAK’ function state:

This implements the “Secure Attention Key” --- the idea is to prevent
trojan horses by killing all processes associated with this tty when the user
hits the “Secure Attention Key”. Required for super-paranoid applications
--- see the Orange Book for more details. [Ref.22]

The ‘do_SAK’ function serves its purpose for those who know how and when to use it.

However, it is not widely known by Linux users and is not a good example of how a

34

Trusted Path should function. The function ‘do_SAK’ does not recognize the pressing of
the “Secure Attention Key”. The function ‘do_SAK’ does implement what the SAK does
after it has been pressed. There are at least two different ways of using the keyboard to
invoke the ‘do_SAK’ function and implement the SAK. These implementations are

described in the following subsections.

a. Magic System Request Key

The ‘Magic System Request Key’ (MSRK) was implemented as a tool for
Linux kemnel programmers. The code for the MSRK is found in the
‘linux/drivers/char/sysrq.c’ source file [Ref.23]. The Red Hat Linux 6.0 default
configuration for the Linux kernel has this option turned on. The MSRK can be turned
on and off by reconfiguring and recompiling the kernel. The reconfiguration option is
located in the ‘Kernel Hacking’ section of the Linux configuration menu [Ref.24]. The
key sequence for the MSRK is ‘Alt-SysRq’ and one of the following keys:

‘R’ reset keyboard to XLLATE mode

‘K’ call ‘do_SAK’ using the current tty

‘B’ restart the machine immediately

‘O’ power off the machine

‘S’ emergency sync

‘U’ emergency remount

‘P’ show registers (pt_regs)

‘T> show task (process) information

‘M’ show memory information

‘0°..’9” set console logging level

‘E’ terminate all user processes

‘T’ kill all user processes

‘L’ kill all processes including init

‘Any other key’ - prints the following help string:

Sync Unmount showPc showTasks showMem loglevel0-8 tErm kIl

killalL
The call to the ‘do_SAK’ function has been accomplished in the code for the ‘K’ option
of the MSRK. The MSRK interface is called when the Alt-SysRq is pressed and then it
waits for another keypress to perform the specific task. The Alt-SysRq sequence is
recognized in the keyboard driver which is found in the ‘linux/drivers/char/keyboard.c’
source file [Ref.25].

The keyboard driver includes code that is only implemented if the MSRK
has been turned on during kernel configuration. If the MSRK is enabled, the keyboard
driver recognizes the Alt-SysRq key sequence (keycode = 84) and passes control to the
MSRK before handing the keycode/scancode(s) to the current keyboard mode controller

for processing [Ref.25]. The keyboard driver does the following:

1 - Receives scancodes created by key presses from the keyboard

2 - Converts the hexidecimal scancode(s) to a single decimal keycode

3 - Passes the scancode(s)/keycode to the current keyboard mode
controller

36

4 - The keyboard mode controller passes the appropriate code(s)
(ASCII, Unicode, keycode, raw scancodes) to the terminal driver

[Ref.26].
The MSRK code in the keyboard driver bypasses steps 3 and 4 described above,
effectively cutting off any chance for remapping the keycode to something else.
Therefore, it is a good implementation of a SAK that communicates directly with the
kernel. This will be the basis for the implementation of the SAK for Policy Enhanced
Linux. Figure 8 shows how data flows through the keyboard driver with and without the
MSRK enabled (the numbers (1), (2), (3), and (4) correspond to the steps described

above).

37

J9ALI(J
[euIULIa T

JBALI(]
[eutuLIa g,

PalqesIq MUSIA

< MV
SPPOIURIS

L4 HAODINN

apoorun
P ALVIX -

[0SV SapoJueds| Ja[puey SIPOIURIS
= =]

T MVINNITIN AUSIN 18)1aAu00) < preoqiaz]

apoakas| :sapoyq Mw%duﬂu&l 4—5pua£as 1 53p0IUEIS

) J3[[o1jue)) t (4] (D
apoJAl pleoqiay] JaALI(] paeoqiay]
poqeuN HHSTAL
< MV
$PPOIULIS

4 HAODINN

apoatun
» HIVIX

[138V < $3p0IURIS

¢ MNVINNTTTIN 19318AuU0]) preogiazy

3poakay | sapoIAl » apodAa 4 pooueos

(© P34 P
(2] Ja[[oqjuoyy (4] (D
apojAl preoqiayy JALX(] preoqiay

Figure 8. Keyboard Driver Data Flow

38

b. Loadkeys

‘Loadkeys’ is a user application that was implemented for the main
purpose of loading the kernel keymap when the keyboard is in translate (XLATE) mode
[Ref.26]. The translate mode controller uses keymaps to assign keycodes to key symbols.
Key symbols are evaluated and processed by the key handler in the keyboard driver.
Then, the key handler passes the appropriate code(s) to the terminal (step 4 from the
previous section) [Ref.26]. ‘Loadkeys’ provides a dynamic mgthod of reassigning key
symbols to keycodes. After ‘loadkeys’ is used, the keyboard driver’s translation tables
are updated.

There are two helper applications that are useful for creating a keymap to
be loaded with ‘loadkeys’. The ‘dumpkeys’ application is used to display the current
contents of the keyboard driver’s translation tables [Ref.28]. Specifically, ‘dumpkeys -1’
will print a list of all key symbols tﬁét can be used with ‘loadkeys’. The ‘showkey’
application used with option ‘k’ (‘showkey -k’) will display the keycode(s) to the screen
as the user presses the key(s) [Ref.29]. In summary, ‘dumpkeys -1’ will provide a list of
key symbols, ‘showkey -k’ will provide the keycodes to specific keys, and ‘loadkeys’ can
be used to link the keycodes and keysymbols together and update the keyboard driver’s
translation tables. Figure 9 shows how the keymap is used with ‘loadkeys’ to update the
keyboard driver translation table. Figure 9 also shows how the helper applications

‘showkey’ and ‘dumpkeys’ are used to gather information for creating keymaps.

39

keymap (multiple entry key mapping)

@ygode keg SE!!_IDOI e ‘loaﬂkeys’ == ke’}’board driver
keycode 14 = BackSpace » »| translation table
keycode 111 = Delete
keycode 84 = SAK
(single entry key mapping)
keycode 84 = SaAK
Helper applications (‘showkey & ‘dumpkeys’)
tty display
press the Backspace key
on the keyboard P ‘showkey -k’ > 14

tty display

‘dumpkeys -1 >

BackSpace
Delete
SAK

Figure 9. Loadkeys Description

‘SAK’ is a supported key symbol listed by ‘dumpkeys -1’ and when |
mapped to a keycode using ‘loadkeys’, performs the same as Alt-SysRq-K when the
MSRK is enabled. It performs the same as the MSRK because the ‘SAK’ key symbol is
defined in the special function table in the key handler. The SAK function in the key
handler calls the ‘do_SAK’ function in the terminal driver [Ref.22],[Ref.25]. Therefore,

any keycode mapped to the ‘SAK’ key symbol using ‘loadkeys’ will implement the

original Linux SAK.

40

The problem with ‘loadkeys’ is that it allows a user application to modify
the keyboard driver’s translation tables. A true SAK should not be modifiable by any
means outside of the TCB. If the SAK were implemented using ‘loadkeys’, it would be
easy to alter the SAK to perform a different action or launch a login spoof program. That
1s \Why the MSRK provides the best implementation for a SAK. Even if the original
Linux SAK key symbol is assigned (using ‘loadkeys’) to the keycode for Alt-SysRgq, the
MSRK handler will catch the keycode and the keyboard mode controller will never see it
unless the MSRK handler passes it on (which it does not do).

2. Modifications Needed

a. Magic System Request Key

The Magic System Request Key provides a mechanism to invoke a
kernelized SAK. The implementation of the MSRK will be used to provide a skeleton for
implementing the SAK driver. The Trusted Path cannot have all of the destructive
functionality inherent in the various options of the standarq Linux MSRK. Therefore,
only the ‘K’ option will be retained for implementation of the SAK. All other keys will

default to ‘do nothing’.

b. SAK Driver

The source code for the SAK driver will be called ‘sak.c’ and will reside
in the ‘/linux/drivers/char/’ directory. The ‘K’ option will be modified to call the

appropriate interface (Login driver or Trusted_Path_Menu_Driver) based on the current

state provided by the State Database.

THIS PAGE INTENTIONALLY LEFT BLANK

42

IV. IMPLEMENTATION STATUS AND FUTURE WORK

A. IMPLEMENTATION CONSIDERATIONS

The SAK_Driver and the dumbgetty process were implemented to show that the
Secure Attention Key was possible. The SAK_Driver was implemented using the Magic
System Request Key (MSRK) driver as a skeleton. The MSRK and the SAK_Driver rely
on the keyboard driver (‘linux/drivers/char/keyboard.c’ & ‘linux/drivers/char/pc_keyb.'c’)
to function appropriately. The MSRK uses the éonstant CONFIG_MAGIC_SYSRQ to
enable and disable the appropriate code sections included in the keyboard driver.
Therefore, a constani CONFIG_SAK was created to enable and disable the SAK_Driver
in the keyboard driver. Everywhere in the keyboard driver that
CONFIG_MAGIC_SYSRQ is ‘deﬁned, CONFIG_SAK has also been defined. The
definitions have been modified so that if both CONFIG_MAGIC_SYSRQ and
CONFIG_SAK are enabled, CONFIG_MAGIC_SYSRQ will be disabled. This ensures
that the SAK_Driver takes precedence over the MSRK and no resource conflicts will
occur. However, it is still a good idea to disable the MSRK when the SAK_Driver is
enabled. The additions and modifications to the keyboard driver files are shown in
Appendix B.

The ‘make xconfig’ command in X-windows was used to configure the kernel for
recompilation during this implementation. The ‘make xconfig’ command launches the
Linux kernel configuration menu. The configuration menu contains many sections (sub-

menus) that list modules and drivers available for compiling when selected. One section,

43

Kernel Hacking, contains the options for enabling and disabling the MSRK. The script
for the menu (‘linux/scripts/kconfig.tk’) was modified to include the Secure Attention
Key (CONFIG_SAK) in the Kernel Hacking section. Now the user has the ability to
select the appropriate configuration option for enabling/disabling the Secure Attention
Key during compilation. The modifications to the configuration menu script are shown in
Appendix B.

The ‘dumbgetty’ process was implemented and is called by ‘init’ after all of the
initialization processes have been started. As described in Chapter III, the ‘inittab’ file is
used to tell ‘init’ which processes to run when initializing the system. The ‘inittab’ file
was modified to call only ‘dumbgetty’ after initialization is complete. The original
‘inittab’ file was set up to start six separate ttys using the ‘mingetty’ application. The
modified ‘inittab’ file is shown in Appendi# B.

With the implementation of ‘dumbgetty’ and the SAK_Driver, Linux now offers a
reasonable user interface for the Secure Attention Key. When the system is started,
‘dumbgetty’ is called and the message “Press the Secure Attention Key (Alt-SysRg-K) to
continue” is displayed to the screen. When the SAK is pressed, the SAK_Driver handles
the keycode and displays the message “SysRq: Congratulations, you’ve pressed the
SAK”. If the user presses any key other than ‘K’ in combination with ‘Alt-SysRq’, the

message “Alt-SysRq-K is the SAK; press the SAK to continue” is displayed.

B. PROBLEMS ENCOUNTERED

The major hurdle for this thesis was in determining where to put the Secure
Attention Key. The research started with the ‘Ctrl-Alt-Del’ key sequence which is
actually trapped by ‘init’ and assigned to the ‘shutdown’ application in the ‘inittab’ file.
It was believed that by studying the ‘Ctrl-Alt-Del’ key sequence, some light may be
shown as to how the SAK could be implemented. However, ‘Ctrl-Alt-Del’ turned out not
to be the ideal place to look. The original Linux SAK is not a highly publicized item in
the Linux documentation available on the Internet. Brouwer’s publication “Kernel
Korner: The Linux Keyboard Driver” was invaluable for understanding the inner
workings of the keyboard [Ref.26]. Also extremely helpful was Brouwer’s publication
“The Linux keyboard and console HOWTO”, written for the Linux Documentation
Project [Ref.30]. After a considerable amount of time invested in reading the keyboard
driver files and learning how keyboard input is handled in Linux, it was possible to move

forward and design how the SAK would be implemented.

C. FUTURE RESEARCH

1. Login_Driver

Final design and implementation decisions need to be made for the Login_Driver.
Research in this area could involve making a more efficient user interface for logging on

to Linux at the kemel level (username and password encryption, password length/type

restrictions, etc).

45

2. Session_Driver

Final design and implementation decisions need to be made for the
Session_Driver. Research in this area will involve a deep understanding of process
family creation in Linux. Specifically, the ability of the Session_Driver to masquerade as
‘dumbgetty’, call ‘fork’, and call ‘execve’ to start a new session.

3. Trusted_Path_Menu_Driver

Final design and implementation decisions need to be made for the
Trusted_Path_Menu_Driver. The Trusted_Path_Menu_Driver references or is referenced
by all of the other drivers in the Trusted Path. The design and implementation of this
interface is not possible until the previous drivers have been completed.

4. Inittab

The ‘dumbgetty’ file must be called by ‘init’ when the system has reached a ready
state after booting. The ‘inittab’ file is vulnerable to attack by those who would seek to
change Fhe processes called by ‘init’. Therefore, some research should be made into how
‘dumbgetty’ can be called by ‘init’ without using the ‘inittab’ script. Otherwise, it will be
easy to gircumvent ‘dumbgetty’ by modifying the ‘inittab’ file. The current way of
preventing this flaw is by setting the permissions of ‘inittab’ to be only accessible by
‘root’. In this way, only an administrator with ‘root’ permission would be able to modify
‘inittab’.

S. Administrative Role

The XTS-300 Trusted Path allows certain administrative options only to people

with ‘administrator’ level priveleges. Administrator functions such as auditing, managing

46

user space, creating compartments, etc. could be made available in the Trusted Path Menu

when the user has logged in with a valid ‘administrator’ username and password.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

APPENDIX A. MODULE DESIGN

A. STATE_MODULE

This module defines the externally visible structure of the State_Module described
in Chapter . The module interface is used to read and modify the current state of the
Linux Trusted Path. This module does not depend on any other module.

External Entry Points:

= SetTPState
= GetTPState

External Types and Constants:

#define START 1
#define READY 2
#define LOGIN_PROMPT 3
#define PASSWORD_PROMPT 4
#define TRUSTED_PATH_MENU 5
#define HELP 6

#define SESSION_LEVEL_PROMPT 7

#define CHANGE_PASSWORD 8
#define NEW_PASSWORD 9
#define CONFIRM_AND_CHANGE 10
#define RUN 11
#define LIST_SESSIONS 12

49

#define KILL_SESSION_MENU 13
typedef TPState_type unsigned int

1. SetTPState

This entry point is used to set the current state of the Trusted Path.

a. External Interface

int SetTPState(const TPState_type desired TPState);

b. Inputs

» desiredTPState

The desired state to be set.

c. Outputs

» <function result>
The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

Verify that the state to be set is valid by comparing the input
desiredTPState with the defined constants. If the state to be set is valid, set the TPState
variable to the desired state from the input desiredTPState. Return the value of
NO_ERROR as the function’s return value. If the state to be set is not valid, return a

value other than NO_ERROR as the function’s return value.

50

2. GetTPState

This entry point is used to read the current state of the Trusted Path.

a. External Interface

TPState_type GetTPState(void);

b. Inputs
<none>
c. Outputs

s <function result>

The current value of the TPState variable.

d. Processing

Return the value of TPState as the function result.

THIS PAGE INTENTIONALLY LEFT BLANK

52

APPENDIX B. SOURCE CODE

This appendix contains the source code for the SAK_Driver that was implemented

for Trusted Path Linux.

A. SAK_DRIVER
1. Sak.h
The ‘sak.h’ file is located in the ‘linux/include/linux/’ directory.

// ———————— e e
// File: sak.h

[] s e -
// Description: This is the header file for the SAK Driver.

// The skeleton for this code is provided by the Linux Magic

// System Request Key Hacks ’‘sysrg.h’ (c) 1997 Martin Mares

// <mj@atrey.karlin.mff.cuni.cz> based on ideas by Pavel Machek
// <pavel@atrey.karlin.mff.cuni.cz>.

//

// Created: 22-May-00 (S. Bartram)

// Modifications:

[/ === e

#include <linux/config.h>
struct pt_regs;

struct kbd_struct;
struct tty_struct;

// Generic Alt-SysRqg interface -- you may call it from any device
// driver, supplying ASCII code of the key, pointer to registers
// and kbd/tty structs (if they are available -- else NULL’s).

void handle_sysrqg(int, struct pt_regs *, struct kbd_struct *,
struct tty_struct *);

2. Sak.c
The ‘sak.c’ file is located in the ‘linux/drivers/char/’ directory.

/] e e e -
// File: sak.c

53

/7
//
/7
/7
//
/7
//
//
/7

Description: This is the implementation file for the
SAK_Driver.
The skeleton for this code is provided by the Linux Magic
System Request Key Hacks ’‘sysrg.c’ (c) 1997 Martin Mares
<mj@atrey.karlin.mff.cuni.cz> based on ideas by Pavel Machek
<pavel@atrey.karlin.mff.cuni.cz>

Created: 22-May-00 (S. Bartram)

// Modifications:

/7

#include <linux/sak.h>
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/reboot.h>
#include <linux/kbd_kern.h>
#include <linux/quotaops.h>
#include <linux/smp_lock.h>

#include <asm/ptrace.h>

#ifdef CONFIG_APM
#include <linux/apm bios.h>

#endif

/) mmmm e
// Function:

// handle_sysrqg

// Inputs:

/7 key = 1 if a key has been pressed, = 0 if no key has
// been pressed

// pt_regs process table register structure

// kbd keyboard structure

// tty tty structure

// Outputs:

// <none>

// Description: This function is called by the keyboard handler
// when Alt-SysRg is pressed. If no other keycode arrives,

// then the function returns and does nothing. If the keycode
// for "k" arrives, then the SAK has been pressed and a message
// is sent to the screen. If any other keycode arrives, the
// function returns and does nothing.

/) mmm e e e ————— e

void handle_sysrqg(int key, struct pt_regs *pt_regs,

54

struct kbd_struct *kbd, struct tty_ struct *tty)
{
if (lkey)
return;
printk (KERN_INFO "SysRq: ");
switch (key) {
#ifdef CONFIG_VT

case ‘k’: /* k -- SAK */
printk("Congratulations, you’ve pressed the SAK\n");
break;
#endif
default: /* Unknown: help */
#ifdef CONFIG_VT
if (tty)

printk("Alt-SysRg-K is the SAK");
#endif
3
}

B. MODIFIED KEYBOARD DRIVER FILES
1. Keyboard.c

The ‘keyboard.c’ file is located in the ‘linux/drivers/char/’ directory.

a. Additions
The following additions were placed at the beginning of the file:

= // if both MSRK and SAK are enabled, then disable
the MSRK

» #if defined (CONFIG_MAGIC_SYSRQ) &&
defined (CONFIG_SAK)

» #undef CONFIG_MAGIC_SYSRQ

* f#endif

The following addition encapsulates the #include <linux/sysrq.h>
statement:

" #ifdef CONFIG_MAGIC_SYSRQ
" fendif

The following addition is placed after the last addition:

» #ifdef CONFIG_SAK

55

" #include <linux/sak.h>
" #endif

b. Modifications

All instances of ‘#ifdef CONFIG_MAGIC_SYSRQ’ were replaced with

the following:
* #if defined(CONFIG_MAGIC_SYSRQ) ||
defined (CONFIG_SAK)
2. Pc_keyb.c

The ‘pc_keyb.c’ file is located in the ‘linux/drivers/char/’ directory.

a. Modifications

All instances of ‘#ifdef CONFIG_MAGIC_SYSRQ’ were replaced with

the following:
* #if defined(CONFIG_MAGIC_SYSRQ) ||

defined (CONFIG_SAK)

C. MODIFIED CONFIGURATION SCRIPT

1. Kconfig.tk

The ‘kconfig.tk’ file is located in the ‘linux/scripts/’ directory.

a. Additions

All code dealing with the MSRK or -containing the text

CONFIG_MAGIC_SYSRQ was copied and modified accordingly.

Original text:

* write_comment $cfg $autocfg “Kernel hacking”
" global CONFIG_MAGIC_SYSRQ

56

" write_tristate $cfg Sautocfg CONFIG_MAGIC_SYSRQ
SCONFIG_MAGIC_SYSRQ S$notmod

Addition immediately after original text above:

" global CONFIG_SAK

® write_tristate $cfg Sautocfg CONFIG_SAK S$CONFIG_SAK
$notmod

Original text:

®* set CONFIG_MAGIC_SYSRQ O

Addition immediately after original text above:
* set CONFIG_SAK 0

Original text:

* bool $w.config.f 30 0 “Magic SysRg key”
CONFIG_MAGIC_SYSRQ

Addition immediately after original text above:

= bool $w.config.f 30 1 “Secure Attention Key”
CONFIG_SAK

D. DUMBGETTY
1. Dumbgetty.c

The ‘dumbgetty.c’ file can be located anywhere. It has been compiled with the

name of ‘dumbgetty’ and placed in the ‘/etc’ directory for reference by the ‘inittab’ file.

/] e e -
// File: dumbgetty.c

/] mm e -
// Description: This is the implementation file for the
// 'dumbgetty’ process. 'dumbgetty’ ignores all

// signals except SIG_KILL and SIG_STOP.

//

// Created: 1-Jun-00 (S. Bartram)

//

// Modifications:

#include <stdio.h>
#include <stdlib.h>

// === e
// Function:

// main

// Inputs:

/7 <none>

// Outputs:

// <none>

// Description:
// Workhorse function for ‘dumbgetty’. Ignore all

// signals that can be ignored. Display message to
/7 screen and sleep until killed.
[/ e e

int main() {

// ignore all of the signals that can be ignored
signal (SIGHUP, SIG_IGN) ;

signal (SIGINT, SIG_IGN) ;

signal (SIGQUIT, SIG_IGN) ;

signal (SIGILL, SIG_IGN);

signal (SIGTRAP, SIG_IGN) ;

signal (SIGIOT,SIG_IGN) ;
signal (SIGBUS, SIG_IGN) ;
signal (SIGFPE, SIG_IGN) ;
signal(SIGUSRl,SIG_IGN
signal (SIGSEGV, SIG_IGN
signal (SIGUSR2, SIG_IGN
signal (SIGPIPE, SIG_IGN

’
’

’

)
)
)
)
signal (SIGALRM, SIG_IGN) ;
)
)
)
)

’

signal (SIGTERM, SIG_IGN

’

signal (SIGCHLD, SIG_IGN

’

(

(

(

(
signal (SIGCONT, SIG_IGN
signal (SIGTSTP, SIG_IGN) ;
signal (SIGTTIN, SIG_IGN) ;
signal (SIGTTOU, SIG_IGN) ;
signal (SIGURG, SIG_IGN) ;
signal (SIGXCPU, SIG_IGN) ;
signal (SIGXFSZ, SIG_IGN) ;
signal (SIGVTALRM, SIG_IGN) ;
signal (SIGPROF, SIG_IGN) ;
signal (SIGWINCH, SIG_IGN) ;
signal (SIGIO,SIG_IGN);
signal (SIGPWR,SIG_IGN) ;

printf("Press the Secure Attention Key to continue:\n");
while (1) {

sleep(1l);
}

58

return 0;

E. MODIFIED INITTAB
1. Inittab

The ‘inittab’ file is located in the ‘/etc’ directory.

a. Additions

Original text:

" pr:12345:powerokwait:/sbin/shutdown -c¢ “Power
Restored; Shutdown Cancelled”

Addition immediately after original text above and just before the
modifications in the next section:

* #Run ‘dumbgetty’
. 1:2345:on<;e:/etc/dumbgetty

b. . Modifications

Deleted out the following original text:

Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty ttyl
1:2345:respawn:/sbin/mingetty tty2
1:2345:respawn:/sbin/mingetty tty3
1:2345:respawn:/sbin/mingetty tty4
1:2345:respawn:/sbin/mingetty ttyS
1:2345:respawn:/sbin/mingetty tty6

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

10.

11.

LIST OF REFERENCES

Department of Defense, Trusted Computer System Evaluation Criteria, DOD
5200.28-STD, December 1985.

National Security Agency, Computer Security Evaluation Frequently Asked
Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect1.html#0Q8, August
1999. ‘

National Security Agency, Computer Security Evaluation Frequently Asked
Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect1.html#Q2, August
1999.

National Security Agency, Computer Security Evaluation Frequently Asked
Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect1.html#Q3, August
1999.

National Security Agency, Common Criteria Version 2.1,
http://www.radium.ncsc.mil/tpep/librarv/ccitse/ccitse.html, March 1999.

National Security Agency, Computer Security Evaluation Frequently Asked

Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect2. html#Q3, August
1999.

National Security Agency, Computer Security Evaluation Frequently Asked
Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect2.html#Q4, August
1999.

National Security Agency, Computer Security Evaluation Frequently Asked
Questions, http://www.radium.ncsc.mil/tpep/process/fag-sect3.html#Q3, August
1999.

Brinkley, Donald L., Schell, Roger R., Concepts and Terminology for Computer
Security, ed. Abrams, Jajodia, and Podell, in Information Security, An Integrated
Collection of Essays, IEEE Computer Society Press, 1995.

National ~ Security = Agency, Trusted Product Evaluation Program,
http://www.radium.ncsc.mil/tpep/epl/entries/TTAP-CSC-EPL.-99-001.html,
November 1999.

National ~ Security = Agency, Trusted Product Evaluation Program,
http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL -95-003.html, July 1995.

61

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Sun Microsystems, Inc., Trusted Solaris Features, Evaluations,
http://www.sun.comy/software/solaris/trustedsolaris/ts_feature eval.html, May 2000.

Sun Microsystems, Inc., Trusted Facility Manual for Trusted Solaris 1.1, Vol.1, Sun
Microsystems Federal, Inc., February 1994.

Sun Microsystems, Inc., Security Features User’s Guide to Trusted Solaris 1.1, Sun
Microsystems Federal, Inc., February 1994.

National Security = Agency, Trusted Product Evaluation Program,
http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL-92-003-D.html, March 1998.

National ~ Security = Agency, Trusted Product Evaluation Program,
http://www.radium.ncsc.mil/tpep/epl/historical.html, May 1992.

Wang Federal, Inc., XTS-300 User’s Manual, STOP 4.4 Version, Wang Federal, Inc.,
April 1997.

Wang Federal, Inc., XTS-300 Trusted Facility Manual, STOP 4.4 Version, Wang
Federal, Inc., April 1997.

Clark, Paul C., A Linux-Based Approach to Low-Cost Support of Access Control
Policies, United States Navy, Naval Postgraduate School, September 1999.

Beck, Michael, Bohme, Harald, Dziadzka, Mirko, Kunitz, Ulrich, Magnus, Robert,
Verworner, Dirk, Linux Kernel Internals, Second Edition, Addison-Wesley, 1998.

Wirzenius, Lars, Oja, Joanna, The Linux System Administrator’s Guide, Version
0.6.2, http://www.linuxdoc.org/L.DP/sag/x1766.html, October 1999.

Torvalds, Linus, Red Hat Linux 6.0, linux/drivers/char/tty_io.c, 1992.

Mares, Martin, Red Hat Linux 6.0, linux/drivers/char/sysrq.c, 1997.

Torvalds, Linus, Red Hat Linux 6.0, xconfig, 1999.

Torvalds, Linus, Myreen, Johan, Niemann, Christoph, Kankkunen, Risto, Brouwer,
Andries, Mares, Martin, Uytterhoeven, Geert, Red Hat Linux 6.0,
linux/drivers/char/keyboard.c, 1998.

Brouwer, Andries E., Kernel Korner: The Linux Keyboard Driver, Linux Journal
Issue #14, June 1995.

62

27. Torvalds, Linus, Red Hat Linux 6.0, loadkeys, October 1997.

28. Torvalds, Linus, Red Hat Linux 6.0, dumpkeys, October 1997.

29. Torvalds, Linus, Red Hat Linux 6.0, showkey, October 1997.

30. Brouwer, Andreas E., The Linux keyboard and console

http://www.redhat.com/mirrors/LDP/HOWTO/Keyboard-and-Console-
HOWTO.html, February 1998.

63

HOWTO,

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.....couumeemeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox LIDIary.....cccccoiierieieininierieieeseeeeseieeeeee et
Naval Postgraduate School

411 Dyer Rd.

Monterey, California 93943-5101

Chairman, Code CS.......e i eeeetee et et e e e e e e e e e e eeenseenens
Computer Science Department

Nava] Postgraduate School
Monterey, California 93943-5000

Dr. Cynthia E. ITVINE ..ot et
Computer Science Department Code CS/Ic

Naval Postgraduate School

Monterey, CA 93943-5000

Mr. Paul C. Clark ...co.ooeemeeiceieee e
Computer Science Department Code CS/Cp

Naval Postgraduate School

Monterey, CA 93943-5000

Mr. James P. ANAEISONccooiiiiiiemiiiiierienteeeeeee et
James P. Anderson Company

Box 42

Fort Washington, Pennsylvania 19034

ME. Paul Pitelli ...c..coeeuueeeceeeeeeeneeeeeeeeneeeses oo s
National Security Agency

Research and Development Building

R2, Technical Director

9800 Savage Road

Fort Meade, Maryland 20755-6000

65

Mr. Howard HOIM ..c..ooiiiiiiiiieiciec ettt
National Security Agency

Research and Development Building

R23, Chief

9800 Savage Road

Fort Meade, Maryland 20755-6000

MI. Grant Wagnerc..ccccocevivenieieeriniricniesiesse e eeste e sse e sesaa s e saesassens
National Security Agency

Research and Development Building

R23

9800 Savage Road

Fort Meade, Maryland 20755-6000

Carl R. SHel ...t
Space and Naval Warfare Systems Command

PMW 161

Building OT-1, Room 1024

4301 Pacific Highway

San Diego, California 92110-3127

Commander, Naval Security Group Command..........cccccerveerreeerennnenne. vearsnes '
Naval Security Group Headquarters
9800 Savage Road . .

Suite 6585

Fort Meade, Maryland 20755-6585

Ms. Barbara FICIMINGcoocviieriniiieitccecesteeetctntere et
Defense Information Systems Agency

Columbia Pike, Suite 400

Falls Church, Virginia 22041-3230

Mr. Richard Hale........oooiiiicece ettt
Defense Information Systems Agency

Columbia Pike, Suite 400

Falls Church, Virginia 22041-3230

Col. TimOthy FONG ..c..ueoiiiiee et
Defense Information Systems Agency

5600 Columbia Pike

Falls Church, Virginia 22041

66

D

15.

16.

17.

18.

Mr. George Bieber.......ccoiviiiiciiiiiiiciiecceene

Defense Information Systems Agency

Center for Information Systems Security

5113 Leesburg Pike, Suite 400
Falls Church, Virginia 22041-3230

Ms. Louise DavidSOn....coeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeaenmnnnns

N643

Presidential Tower 1

2511 South Jefferson Davis Highway
Arlington, Virginia 22202

CAPT James NEWINAN ..couveeeiierieeeeeeeeeeeeeeeeeeeereeenaeaeenss

N64

Presidential Tower 1

2511 South Jefferson Davis Highway
Arlington, Virginia 22202

ENS Scott A. Bartram cc.eueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeenens

C/O Barbara Sullivan
P.O.Box 6
Crescent Lake, OR 97425

67

